

Shell Command

The standard libary’s subprocess [https://docs.python.org/2/library/subprocess.html#module-subprocess] modules provides a convenient way to
invoke arbitrary subprocesses. However, it is currently written primarily
from an application developer’s point of view: it views invocation of the
system shell as something risky that leaves you open to shell injection
attacks, rather than the normal, unexceptional operation it is when using
Python to automate system administration tasks.

This module aims to take over where subprocess [https://docs.python.org/2/library/subprocess.html#module-subprocess] leaves off, providing
convenient, low-level access to the system shell, that automatically handles
filenames and paths containing whitespace, as well as protecting naive code
from shell injection vulnerabilities.

Significantly, it allows system administrators to divide responsibility
appropriately, using Python for its superior data structures and flow
control syntax, while using the underlying system shell normally for command
invocation and pipeline manipulation.

A couple of basic examples:

>>> from shell_command import shell_call
>>> shell_call("ls *.py")
setup.py shell_command.py test_shell_command.py
0
>>> shell_call("ls -l *.py")
-rw-r--r-- 1 ncoghlan ncoghlan 391 2011-12-11 12:07 setup.py
-rw-r--r-- 1 ncoghlan ncoghlan 7855 2011-12-11 16:16 shell_command.py
-rwxr-xr-x 1 ncoghlan ncoghlan 8463 2011-12-11 16:17 test_shell_command.py
0

Now with some string interpolation (protected from shell injection attacks by
default - use !u to override):

>>> from shell_command import shell_call
>>> shell_call("ls {}", "*.py")
ls: cannot access *.py: No such file or directory
2
>>> shell_call("ls {!u}", "*.py")
setup.py shell_command.py test_shell_command.py
0

And a slightly more complex example:

>>> from shell_command import shell_output, iter_shell_output
>>> print(shell_output("ls -l *.py"))
-rw-r--r-- 1 ncoghlan ncoghlan 391 2011-12-11 12:07 setup.py
-rw-r--r-- 1 ncoghlan ncoghlan 7855 2011-12-11 16:16 shell_command.py
-rwxr-xr-x 1 ncoghlan ncoghlan 8463 2011-12-11 16:17 test_shell_command.py
>>> for line in iter_shell_output("ls -l *.py | tee {}", "example file.txt"):
... print(line)
...
-rw-r--r-- 1 ncoghlan ncoghlan 391 2011-12-11 12:07 setup.py
-rw-r--r-- 1 ncoghlan ncoghlan 7855 2011-12-11 16:16 shell_command.py
-rwxr-xr-x 1 ncoghlan ncoghlan 8463 2011-12-11 16:17 test_shell_command.py

 >>> print(open("example file.txt").read())
-rw-r--r-- 1 ncoghlan ncoghlan 391 2011-12-11 12:07 setup.py
-rw-r--r-- 1 ncoghlan ncoghlan 7855 2011-12-11 16:16 shell_command.py
-rwxr-xr-x 1 ncoghlan ncoghlan 8463 2011-12-11 16:17 test_shell_command.py

String Interpolation

This module uses a custom string interpolation mechanism based on
str.format() [https://docs.python.org/2/library/stdtypes.html#str.format]. By default, all interpolated arguments are coerced to
strings and quoted to escape any whitespace and shell metacharacters. This
quoting can be bypassed with the !u conversion specifier as shown in the
examples above.

Convenience API

The module level convenience API consists of four functions:

	
shell_call(*args, **kwds)

	A subprocess.call() variant for shell command invocation.

args and kwds are both passed though to the string formatting call.
Refer to String Interpolation for details of the implicit quoting
behaviour.

	
check_shell_call(*args, **kwds)

	A subprocess.check_call() variant for shell command invocation.

args and kwds are both passed though to the string formatting call.
Refer to String Interpolation for details of the implicit quoting
behaviour.

	
shell_output(*args, **kwds)

	A subprocess.check_output() variant for shell command invocation.

args and kwds are both passed though to the string formatting call.
Refer to String Interpolation for details of the implicit quoting
behaviour.

For a successful call, a trailing newline (if any) will be removed from
the result.

Use shell redirection (2>&1) to capture stderr in addition to stdout.

As with subprocess.check_output(), this returns encoded bytes by default
in Python 3. Passing universal_newlines=True in the constructor will
also automatically decode the output to text with the UTF-8 codec.
Alternatively, the result may be explicitly decoded after the call.

	
iter_shell_output(*args, **kwds)

	An alternative to shell_output() that yields output data as it becomes
available.

args and kwds are both passed though to the string formatting call.
Refer to String Interpolation for details of the implicit quoting
behaviour.

Since lines are made available as they are produced, the final line will
still contain its terminating newline (if any).

This operation relies on the use of select.select() [https://docs.python.org/2/library/select.html#select.select] on subrocess
pipes, and hence is known to fail on Windows.

ShellCommand

The ShellCommand class implements the actual functionality of the
module. By creating instances of this class directly, it is possible to
override the default arguments to subprocess.Popen [https://docs.python.org/2/library/subprocess.html#subprocess.Popen] used by the
convenience functions.

	
class ShellCommand(command, **subprocess_kwds)

	ShellCommand accepts a command string and Popen constructor arguments.

When initialised with an existing ShellCommand object, a new copy is
made with the original Popen arguments updated with any new arguments.

Method arguments are interpolated into the command string using
str.format() style processing. All method arguments are coerced to strings
and escaped using shlex.quote() by default, use the custom conversion
specifier ”!u” (for “unquoted”) or any of the standard conversion
specifiers (such as ”!s”) to bypass this quoting process.

As brace characters (‘{‘ and ‘}’) in the command string are used to
indicate interpolated fields, they must either be included in an
interpolated value or else doubled (i.e. ‘{{‘ and ‘}}’) in the format
string in order to be passed to the underlying shell.

The “shell” argument to Popen is enabled be default, but this can be
overridden by explicitly setting it to False.
In Python 3, the “universal_newlines” option is also enabled by default.

	
check_shell_call(*args, **kwds)

	A subprocess.check_call() variant for shell command invocation.

Refer to ShellCommand for details of the implicit quoting behaviour.

	
format(*args, **kwds)

	A str.format() variant for shell command interpolation.

Refer to ShellCommand for details of the implicit quoting behaviour.

	
format_map(mapping)

	A str.format_map() variant for shell command interpolation.

Refer to ShellCommand for details of the implicit quoting behaviour.

	
iter_shell_output(*args, **kwds)

	An alternative to shell_output() that yields output data as it
becomes available.

Since lines are made available as they are produced, the final line
will still contain its terminating newline (if any).

This operation relies on the use of select.select() on subrocess
pipes, and hence is known to fail on Windows.

	
shell_call(*args, **kwds)

	A subprocess.call() variant for shell command invocation.

Refer to ShellCommand for details of the implicit quoting behaviour.

	
shell_output(*args, **kwds)

	A subprocess.check_output() variant for shell command invocation.

Refer to ShellCommand for details of the implicit quoting behaviour.

Use shell redirection (2>&1) to capture stderr in addition to stdout
A trailing newline (if any) will be removed from the result

As with subprocess.check_output(), this returns encoded bytes by
default in Python 3. Passing “universal_newlines=True” in the
constructor will also automatically decode the output to text with
the UTF-8 codec. Alternatively, the result may be explicitly decoded
after the call.

Obtaining the Module

This module can be installed directly from the Python Package Index [http://pypi.python.org] with
pip [http://www.pip-installer.org]:

pip install shell_command

Alternatively, you can download and unpack it manually from the shell_command
PyPI page [http://pypi.python.org/pypi/shell_command].

There are no operating system or distribution specific versions of this
module - it is a pure Python module that should work on all platforms (aside
from :func:iter_shell_output being known not to work on Windows).

Supported Python versions are 2.7 and 3.2+.

Development and Support

Shell Command is developed and maintained on BitBucket [https://bitbucket.org/ncoghlan/shell_command/overview]. Problems and suggested
improvements can be posted to the issue tracker [https://bitbucket.org/ncoghlan/shell_command/issues?status=new&status=open].

Indices and tables

	Index

	Module Index

	Search Page

 Python Module Index

 s

 		 	

 		
 s	

 	
 	
 shell_command	
 Tools for invoking the system shell

Index

 C
 | F
 | I
 | S

C

 	
 	check_shell_call() (in module shell_command)

 	(ShellCommand method)

F

 	
 	format() (ShellCommand method)

 	
 	format_map() (ShellCommand method)

I

 	
 	iter_shell_output() (in module shell_command)

 	(ShellCommand method)

S

 	
 	shell_call() (in module shell_command)

 	(ShellCommand method)

 	shell_command (module)

 	
 	shell_output() (in module shell_command)

 	(ShellCommand method)

 	ShellCommand (class in shell_command)

 nav.xhtml

 Table of Contents

 		Shell Command

_static/ajax-loader.gif

_static/comment-close.png

_static/down-pressed.png

_static/file.png

_static/plus.png

_static/up-pressed.png

_static/down.png

_static/up.png

_static/minus.png

_static/comment.png

_static/comment-bright.png

